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The learning of a motor task is known to be improved by sleep,
and sleep spindles are thought to facilitate this learning by en-
abling synaptic plasticity. In this study subjects implanted with
electrocorticography (ECoG) arrays for long-term epilepsy moni-
toring were trained to control a cursor on a computer screen by
modulating either the high-gamma or mu/beta power at a single
electrode located over the motor or premotor area. In all trained
subjects, spindle density in posttraining sleep was increased with
respect to pretraining sleep in a remarkably spatially specific
manner. The pattern of increased spindle activity reflects the
functionally specific regions that were involved in learning of
a highly novel and salient task during wakefulness, supporting the
idea that sleep spindles are involved in learning to use a motor-
based brain–computer interface device.

The need for sleep is ubiquitous in the animal kingdom, but the
purpose of sleep is still poorly understood and controversial in

many respects. Nevertheless, it is now widely accepted that sleep,
and especially nonrapid eye movement (NREM) sleep, plays an
active role in learning and memory consolidation (1). NREM
epochs are easily identified in the cortical field potential as peri-
ods dominated by high-amplitude, low-frequency oscillations (2).
Sleep spindles are one of the most prominent and recognizable of
these oscillations, and as such they are commonly used to classify
NREM sleep stages. These brief 12- to 15-Hz oscillations are
generated by the reticular nucleus of the thalamus and grouped by
the slow oscillation (<1 Hz) in the neocortex (3). The reticular
nucleus is involved in gating sensory inputs and it is hypothesized
that sleep spindles prevent incoming sensory information from
reaching the neocortex during NREM sleep (4). This dissociation
could provide a window for uninterrupted replay of recently
instantiated memories and thus support sleep-dependent memory
consolidation. There is now a large body of evidence linking sleep
spindles to learning and memory in both humans and animals (5–
7). For example, increases in spindle density have been correlated
with learning a declarative memory task (5), with retention of
verbal memories (6), and with relevant recall of a remote memory
(7). Additionally, spindles are correlated with sharp-wave com-
plexes in the hippocampus (8, 9) and are associated with stored-
trace reactivation in the neocortex (10). It has been hypothesized
that sleep spindles actually facilitate learning by establishing
a cortical state that is conducive to synaptic plasticity, and
therefore, to sleep-dependent memory consolidation (11, 12). A
great deal of emphasis has been placed on the role of sleep
spindles in the hippocampal–neocortical dialogue (8, 9, 13), and
thus consolidation of hippocampal-dependent memories. How-
ever, there is ample data to suggest that spindles are also im-
portant for motor and procedural learning (14–17).
This theory is complicated by the fact that, whereas learning

requires changes to specific circuits, spindles have traditionally
been considered global events arising from a single generator.
However, several studies have shown that this assumption requires
reevaluation. Nishida and Walker (17) showed that following
procedural task learning, spindles were increased in the learning
hemisphere with respect to the nonlearning hemisphere. More

recently there has been a report that spindles recorded by mag-
netoencephalography, in contrast to those recorded by EEG, arise
from multiple asynchronous generators (18), a result which may
be explained by the interaction of core and matrix thalmocortical
projections (19). The globally synchronous nature of spindles was
further challenged by Nir et al. (20) who used depth electrodes
implanted in medial brain areas to show that the majority of sleep
spindles are not synchronous across the brain but rather localized
to a single brain area. However, the extent of the locality of
spindles within a brain area has not yet been demonstrated.
Furthermore, it has not been shown that local groups of spindles
are independently modulated by behavior.
In this study, subjects implanted with subdural electrode grids

for epilepsy monitoring were trained to control a computer cursor
by modulating the activity at a single electrode. Here we show that
after training on a brain–computer interface (BCI) the rate of
sleep spindle occurrence in posttraining sleep is increased in a
remarkably localized pattern around the functionally specific
regions that were involved in task performance.

Results
Of the five subjects that participated in this study, three were
trained on the task and two served as controls. In all subjects,
functional screening confirmed that the implanted grid provided
coverage of primary motor and/or premotor areas; in all subjects
the epileptic focus was determined to be outside of these areas.
The three test subjects were trained to control a computer cursor
in one dimension, first with overt movement and later with motor
imagery. Cursor position was modulated by the power in either the
high-gamma or mu/beta band measured at a single electrode (the
task electrode) over primary motor or premotor cortex. Mu/beta
(10–30Hz) is a motor rhythm that broadly decreases in power over
motor areas in response to movement or imagined movement
(21). In contrast, power in the high-gamma (70–100 Hz) band
increases very locally in response to specific motor movement or
imagery (22). Both signals have been successfully used for BCI
control (23–25). During each task trial, a cursor was presented
vertically centered on the far left side of the screen and moved at
a fixed rate across the screen to the right side. The vertical velocity
of the cursor was updated every 40 ms based on the power in the
specified frequency band recorded at the task electrode. The
subject was asked to control the cursor such that when it reached
the far right side of the screen its vertical position was within
a designated target range. All subjects were given essentially the
same instructions, but subjects were free to adopt whatever
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strategy they liked. For example, some subjects maintain a con-
stant level of exertion throughout the duration of the trial, whereas
others exert little effort for most of the trial and then ramp up
activity at the end to hit the target. Empirically, a mu/beta-based
BCI is more difficult to control than a high-gamma–based BCI.
The BCI task that was presented was highly novel, challenging,

and salient for the subjects. Because subjects used real and/or
imagined movement to control the cursor, it can be considered
a visuomotor learning task, although lacking the tactile and
proprioceptive sensory afferents that accompany normal move-
ment. However, the learning of the procedural elements of the
task cannot be separated from the memory of the experience of
the task; the unprecedented nature of the task suggests a strong
declarative memory component as well.
An automatic spindle detection algorithm was used to count

the number of sleep spindles per minute recorded on every
electrode during all identified NREM sleep epochs. The spindle
rate during NREM on the day before training was compared
with the spindle rate after training on the first training day.
In all of the trained subjects, the average spindle rate at the task

electrode was significantly (rate ratio test, P < 0.001) increased
following BCI training and a cluster pattern of spindle increases
emerged around the task electrode (Fig. 1). Subjects 1 and 2 were
trained on a high-gamma–based BCI. In subject 1, the task elec-
trode was on the posterior edge of the precentral gyrus in Brod-
mann area 4 (primary motor cortex) (26). In subject 2, the task
electrode was on the precentral gyrus at the boundary between
Brodmann areas 4 and 6 (premotor cortex) (26). Subject 1 used
real and imagined tongue movement to achieve control; subject 2
used real and imagined hand movement. In these two subjects the
task electrode and one or two of its nearest neighbors (1-cm in-
terelectrode distance) showed significant increases in spindle rate.
Interestingly, in both of these subjects a broad pattern of decreased
spindle rate appeared across the rest of the grid after training.
Subject 3 was trained on amu/beta-based BCIwith an electrode on
the posterior aspect of the middle frontal gyrus over Brodmann
area 6 (premotor cortex) (26). This subject used real and imagined
handmovement to control the cursor. The same clustering pattern
appeared, but the effect was extended to second and third neigh-
bors with tapering amplitude. This is partly accounted for by the
fact the task electrode was on a minigrid, and thus its nearest
neighbors were twice as close (0.5-cm interelectrode distance).
The broader distribution of spindle increases may also have to do
with the use of mu/beta as the control signal. Changes in the low-
frequency motor rhythms have a greater spatial extent than
changes in high gamma (27), which is thought to reflect an increase
in local neural activity (22).
In control subjects who were not trained on the BCI task, some

electrodes did show increases in spindle rate. This is not surprising,
as these subjects participated in other activities during the day.
However, the focally distributed pattern of rate increases observed
after BCI training did not emerge in these subjects (Fig. 2).
The observation of localized spindle-rate modulation prompts

several additional questions. For example, how localized are
spindles? Do they occur on each electrode independently or on
groups of electrodes at the same time? Does this change as a
function of training? Are functionally related but physically sepa-
rated areas modulated independently or together? To answer
these questions, a method was developed to examine spindle
comodulation across a population of electrodes. A coincidence
measure was used to determine the extent of spindle comodulation
between different electrodes; the coincidence was defined as the
likelihood that a spindle would be detected on the first electrode
within half a second of a spindle being detected on the second
electrode. Comparison of pre- and posttraining sleep shows that
electrodes have largely the same pattern of coincidence over both
nights, and that this pattern is largely (but not uniformly) domi-
nated by physical locality (Fig. 3 and see Fig. S6). A “distance”

based on coincidence was used to hierarchically cluster electrodes
into groups. Here these groups are referred to as networks but it
should be understood that these networks are descriptive and have
somewhat fluid boundaries based on the threshold that is chosen
for clustering. The key point is that electrodes next to each other on
the hierarchical clustering tree are more likely to have concurrent
spindles regardless of where group boundaries are drawn. See Figs.
S1–S5 for a more detailed view of these trees. Electrodes showing
increases in spindle rate after training were invariably part of the
same group (Fig. 4). In subject 1, two noncoincident and spatially
distant groups showed increased rates. Only one of the groups was
related to the BCI task; the other group was apparently modulated
by an experimentally uncontrolled experience or an experimentally
related process at a nontask electrode. In subject 2, only electrodes
belonging to the same coincidence group as the task electrode

Fig. 1. Changes in spindle rate after training. For each electrode, the dif-
ference between the average rate of spindle occurrence in pre- and post-
training sleep is plotted on the subject’s cortex as a percentage of the sum of
the means. Warm colors indicate a rate increase; cool colors indicate a rate
decrease. Electrodes that showed no significant (P < 0.001, Bonferroni cor-
rected for multiple comparisons) change are drawn in gray. The electrode
that was used for BCI control is circled in white. Subjects 1 (A) and 2 (B) were
implanted with standard-sized grids (1 cm) and used high-gamma power for
control. Subject 3 (C) was implanted with both a higher resolution (0.5 cm)
and a standard-sized grid and used mu/beta power for control. Clusters of
spindle-rate increases around the task electrode suggest that BCI training is
responsible for the effect.
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showed increased rates. In subject 3, the coincidence group that
includes the task electrode over the premotor cortex also includes
electrodes over the primary hand motor cortex, and many of these
electrodes showed increases in spindle rate after training. These
results suggest that spindles in preexisting networks are differen-
tially modulated based on training.

Discussion
A large and growing body of literature supports the involvement
of NREM sleep in learning and memory of all sorts (28). In-
creasingly, sleep spindles, one of the most prominent features of
NREM, have been implicated in these plastic processes (5, 7, 8,
17, 29). It has been postulated that spindles facilitate synaptic
plasticity in cortical cells via calcium-dependent mechanisms
(11), and it has been shown that cortical stimulation at the
spindle frequency increases synaptic plasticity (30). If spindles
are truly the carriers of memory consolidation, then they must
act specifically on local circuits. Recent reports that spindles can
occur independently in different medial brain areas suggest that
spindles may have more of a local component than previously
thought (20). Even so, these data cannot speak to whether
spindles are localized within brain areas or whether local groups
of spindles are specifically modulated by behavior.
One of the unique aspects of the BCI training is that successful

performance is by design one-to-one correlated with activity in
a small, well-defined part of the cortex. This, combined with the
novelty, difficulty, and salience inherent to the task, presents an
opportunity to examine how learning in local circuits impacts
posttraining sleep. Our results show that following training on
a BCI task, there was a specific increase in the rate of sleep
spindles detected on the electrode used to control the BCI.
Furthermore, a distinctive pattern of spindle-rate increases was
observed for all three trained subjects. This pattern, which con-
sisted of a cluster around areas known to be critically involved in

the task, strongly suggests that the training was responsible for the
effect. These results demonstrate that sleep spindles are not only
locally manifested, but they are also locally modulated based on
behavior. The observed spatially specific increases in spindle rate,
taken together with previously reported findings, strongly support
the hypothesis that sleep spindles facilitate motor-based learning
in local circuits.
The generalized nature of these results is demonstrated by

consistency between different subjects, different kinds of motor
imagery (tongue vs. hand), different brain areas (primary motor
cortex vs. premotor cortex), and even different control signals
(mu/beta vs. high gamma). Additionally, subjects were recorded
at two different research centers using different recording systems
and parameters.
This study takes advantage of the regular arrangement of

electrodes on the electrocorticography (ECoG) grid to determine
the spatial extent of spindle networks on the surface of the neo-
cortex. The coincidence of detected spindles between electrodes
reveals that different spindle networks exist within the boundaries
of the grid. Not surprisingly, neighboring electrodes tended to be
part of the same coincidence network. However, these networks
do not have a consistent spatial extent and the number of net-
works varies between subjects. Furthermore, in one subject, two
sets of motor-related electrodes on different grids, although
physically separated, were part of the same spindle network. This
suggests that the network boundaries are determined by func-
tional connectivity and not spatial proximity. In all of the subjects,
the electrodes showing training-related increases in spindle rate
were part of the same coincidence network. The coincidence
pattern was highly similar between the pretraining night and the
posttraining night, and thus it appears that behavioral-related
changes in spindle rate are the result of a change in the gain on
preexisting spindle networks and do not reflect a change in the
pattern of connectivity, at least on this time scale.
Cortical sleep spindles are correlated with hippocampal sharp

waves (8, 9) and stored-trace reactivation (10), and are therefore
frequently associated with declarative memory processes. Other
studies have shown that spindles increase in response to other
kinds of learning as well (5, 7, 8, 17, 29), and this is confirmed by
our results, which focus on what is essentially a motor task. This
suggests that sleep spindles are involved in general mechanisms
of cortical plasticity and not specific to hippocampal stored-
trace reactivation.
Although these results are compelling, several caveats and

potential confounds must be noted. These data were collected
from epileptic patients who were not only tapering off of their
antiseizure medication, but also taking pain medication. Epilepsy
and sleep have a known interaction, and medications may affect
sleep patterns (31). In addition, all of the subjects slept poorly
with multiple arousals. Because the experimental schedule is
determined by each subject’s clinical and personal needs, the
time of day when subjects trained on the task was not controlled,
nor was the time between task performance and sleep onset.
Spindle rate is known to be affected by multiple factors including
age, sex, menstrual cycle, and intelligence (32–34). For this
reason absolute differences in spindle rate should not be com-
pared between subjects; instead a relative difference is used to
measure within-subject changes.
In conclusion, these results are consistent with a scenario in

which sleep spindles are generated in the thalamus, but gated by
small, functionally connected networks in the neocortex. The
gain on these “gates” is determined by the drive for plasticity in
these networks, which is related to waking behavior, in this case,
training on a BCI task.

Materials and Methods
Subjects. All subjects were patients undergoing long-term ECoGmonitoring in
preparation for surgical treatment of intractable epilepsy. Data were collected

Fig. 2. Spindle-rate differences in control subjects. For each electrode, the
difference between the average rate of spindle occurrence on two consec-
utive nights of sleep is plotted on the subject’s cortex as a percentage of the
sum of means. Warm colors indicate a rate increase; cool colors indicate
a rate decrease. Electrodes that showed no significant (P < 0.001, Bonferroni
corrected for multiple comparisons) change are drawn in gray. These sub-
jects had coverage of motor areas but did not train on a BCI task. Both
subjects 4 (A) and 5 (B) were implanted with standard-sized grids (1 cm). No
focal clusters of spindle-rate increases are apparent.
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fromfive subjects (three female, ages 16–29)with subdural platinumelectrode
arrays (Ad-Tech) covering motor or premotor cortex. Decisions about elec-
trode placement were based exclusively on clinical considerations. Electrodes
on the standard-sized grids had a 2.3-mm exposed surface diameter and were
spaced at 1 cm; electrodes on the minigrid were the same size, but the
interelectrode distance was only 0.5 cm. Subjects 1, 2, 4, and 5 were patients at
the University of Washington; subject 3 was a patient at Utrecht University
Medical Center. All subjects gave informed consent according to the protocol
approved by either the Seattle Children’s Hospital and Regional Medical
Center Institutional Review Board (University of Washington; subjects 1, 2, 4,
and 5) or the Medical and Ethical Board of University Medical Center, Utrecht
(subject 3). In three of the subjects, BCI experiments were performed 3–6 d
after implantation of the electrode grid; sleep data were collected starting on
the third day after surgery and continued for the duration of the monitoring
(usually 7–10 d). Subjects 4 and 5 did not participate in the BCI experiments.
Please see SI Materials andMethods for subject-specific methods and statistics
as well as notes about potential confounds.

Recording. At the University of Washington, the ECoG signals were recorded
by the XLTEK (Natus Medical) clinical monitoring system at a sampling rate
of 500 (subjects 1 and 2), 1,000 (subject 2), or 2,000 Hz (subjects 4 and 5). The
standard systemparameters imposeahigh-passfilteratabout0.1Hz.AtUtrecht
University Medical Center, the ECoG signals were recorded with a Mircromed
system at 512 Hz and band-pass filtered between 0.15 and 134.4 Hz.

Data Preprocessing. Data were notch filtered to remove line noise at either 50
Hz (subject 3) or 60 Hz (all other subjects). Data sampled at rates greater than
500 Hz were antialias-filtered and downsampled to 500 Hz using the Matlab
(MathWorks) “decimate” function.

Sleep Identification. Non-REM sleep epochs were identified by eye using the
increased power in the delta band (1–6 Hz) and verified by the presence of K
complexes and spindles. For every sleep epoch, all electrode traces were nor-
malized by z scoringwith respect to the amplitude in the 5- to 50-Hz range. This
frequency range was chosen to eliminate the variable amplitude effects of K
complexes, which have a maximum amplitude in medial–frontal regions (35).

Fig. 3. Coincidence matrices. For each subject, the coincidence matrices for sleep on the first and second days are shown as heat maps. Complete coincidence is red;
zero coincidence is blue. Thepatternof coincidence is similar between the twonights as demonstratedby the correlation coefficient,R,which is shownbetween the two
matrices. Electrodes are arranged from1 to 64 for subjects 1, 2, 4, and 5and from1 to48, and65–96 for subject 3. Every increment of 8 represents the edgeof the grid. In
subject 3, electrodes 1–48 are on the regular grid and electrodes 65–96 are on the minigrid; the transition points between the two grids are marked by the red lines.

18586 | www.pnas.org/cgi/doi/10.1073/pnas.1207532109 Johnson et al.
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Task. Subjects were trained to control a one-dimensional BCI using overt
movements and motor imagery. A brief description of the task is given here,
a detailed explanation can be found in refs. 25 and 36. During task per-
formance the signal was split from the clinical system and passed to the
BCI2000 software package (37), which was used for online signal processing
and stimulus presentation. The control signal was derived from power
changes in either the high-gamma (70–100 Hz) or beta (8–24 Hz) range over
a single electrode (the task electrode). At the University of Washington, the
task electrode was chosen based on a simple cue-based motor screening task
in which the subject was asked to alternately move, or imagine moving, the
tongue or the hand. The electrode with the most significant high-gamma
band-power difference between activity and rest was selected. At Utrecht
University Medical Center, the subject underwent a presurgical functional
MRI (fMRI) in which a target was identified with a finger-tapping task. Af-
ter electrode implantation, this target was confirmed with a functional
screening task and clinical electrical stimulation. During each task trial,
a cursor was presented vertically centered on the far left side of the screen
and moved at a fixed rate across the screen to the right side. The vertical
velocity of the cursor was updated every 40 ms based on the power in the
specified frequency band recorded at the task electrode. The subject was
asked to control the cursor such that when it reached the far right side of
the screen its vertical position was within a designated target range. For two
of the subjects, only two targets were used, the top and the bottom half of
the screen. In one subject the number of targets was increased by dividing
the vertical extent of the screen into smaller fractions. Thus, the size of each
target was reduced and the subject was required to exert a greater degree
of control over the cursor.

Sleep Spindle Detection. An automatic sleep spindle detection algorithm,
similar tothemethodfound in ref.38,wasusedtocount thenumberofdiscrete
spindle events on each electrode. For each identified NREM sleep epoch, the
down-sampled and normalized electrode traces were band-pass filtered be-
tween 11 and 16 Hz using a fourth order Butterworth filter. The Hilbert
transformwas used tofind the envelope of thefiltered signal, whichwas then
squared to provide an estimate of instantaneous power in the spindle range.
Discrete spindle eventswere detected using the following algorithm: First, the
power signals were subjected to a threshold which was defined as five times
the average power in all of the electrodes over the entire sleep epoch. A po-
tential spindle was detected if the power surpassed this threshold for 0.25 s,
consecutively.Awindowwas thengrownaroundeach threshold crossinguntil
the power dropped below a second threshold, which was similarly defined as
two times the average power in all of the electrodes over the entire sleep
epoch. Spindle events thatwere separated by less than 0.125 sweremerged. If
the detected spindle was shorter than 0.33 s or longer than 3.0 s, the spindle
was rejected. Finally, the spectrum of the autocorrelation of each detected
spindle was used to eliminate events that were not periodic by requiring that
50%of the power in the 5- to 30-Hz bandwas in the 11- to 16-Hz range. This is
a conservative filter and intentionally biased toward type II error to avoid
inclusion of paroxysmal events and artifacts.

Spindle Rate. Each sleep epoch was divided into 60-s nonoverlapping sections.
If the duration of the epoch was not evenly divisible into 60 s, the end of the
epoch was truncated. The number of spindle events occurring on each

Fig. 4. Hierarchical clustering of spindle coincidence. A coincidence-based
“distance”was used to cluster electrodes in spindle space. Dendrograms (A, C,
and E) show the relative closeness of electrodes in this space. In this case, the
dendrograms were created from posttraining sleep, but the coincidence be-
tween pre- and posttraining sleepwas similar (Fig. 3 and Fig. S6). The distance
between electrodes, plotted on the x axis, has a maximum value of 1 and
aminimumvalueof0. Clusters are formedby settingadistance threshold; here

a threshold of 85% of the maximum distance was used. Example clusters are
shown indifferent colors in thedendrograms andplottedwith the same colors
on the cortex (B,D, and F). For each subject, the task electrode is marked with
a star on the left side of the dendrogram. For comparison, a similar star has
been placed just to the left (B), on top (D), or to the right (F) of the task
electrode on the corresponding cortical surface. Coincidence was dominated
by locality, but may reflect functional connectivity as well. For example, in
subject 3 (E and F) the red cluster includes both premotor and hand-motor
electrodes. These electrodes are relatively distant in cortical space, but known
to be functionally connected. Interestingly, both motor and premotor mem-
bers of this group showed increases in spindle rate in response to training. In
subject 1 (A and B) the four electrodes that showed increases in spindle rate
following training were members of two noncoincident groups, only one of
which was involved in the task. In subject 2, (C and D) all of the electrodes
showing rate increases were part of the same coincidence group. These results
suggest that preexisting spindle groups are differentially modulated in re-
sponse to training. For side-by-side comparisons of the relative and absolute
magnitude of the spindle-rate difference and the identified clusters, aswell as
enlarged, numbered dendrograms, see Figs. S1–S5.
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electrode during each 60-s section was tallied to give the spindles per minute.
The calculated spindle rates were pooled for all of the epochs occurring in
each recording day, forming a distribution of spindle rates.

Statistical Testing. Thenumber of events occurring in a time interval follows the
Poisson distribution. Thus, we used the rate ratio (conditional) test (39) to de-
termine for every electrode whether the mean rate of spindle occurrence was
statistically different between sleep before BCI training and sleep after BCI
training. The null hypothesis (that the rates were equal) was rejected for a P
value less than 0.001, Bonferroni corrected to account formultiple comparisons.

The effect size is represented by the difference between the mean rates,
scaled by the sum of the means. This measure of the magnitude ranges from
zero to one and indicates how large the difference in the means is relative to
the amplitude of the means.

Ed2d1 = 

�
d2 − d1

�
�
d2 + d1

�:

Coincidence Measure and Hierarchical Clustering. The spindle coincidence, Ci,j,
between electrode i and electrode jwas calculated as the number of spindles
occurring within 0.5 s of each other on the two electrodes (Ni ∩ j) divided by
the total number of spindles on both electrodes (Ni + Nj):

Ci;j =
Ni ∩ j

Ni +Nj
:

This quantity has a maximum value of 0.5 and a minimum value of 0, for
display it is rescaled from 0 to 1. The time frame for coincidence (0.5 s) was
chosen to be generous on the time scale of a spindle (0.33–3.0 s) and to allow

for jitter in onset/offset times. Spindles are not required to be synchronous,
only roughly coincident. Thus, this metric errs on the side of inclusion rather
than exclusion. The similarity of the pretraining coincidence matrix and
posttraining coincidence matrix was measured by the correlation. For a sta-
tistical treatment of similarity see Fig S6.

The coincidence was turned into a distance metric by calculating the
quantity: 1 − Ci,j. Using this distance, agglomerative hierarchical cluster trees
were created using the “linkage” function in Matlab. Distance between
clusters was measured using the unweighted average distance. Clusters, or
coincidence groups, are created by imposing a distance threshold. Here,
thresholds are set to 85% of the maximum distance; this translates to 85% of
the range of coincidence where zero is completely coincident and 1 is
completely noncoincident (i.e., no spindles are ever recorded on both elec-
trodes at the same time). The threshold choice was made by empirical ob-
servation and was chosen for illustrative purposes. Choosing a lower
threshold splits the clusters, choosing a higher threshold merges the clusters,
but the threshold does not change the “coincidence distance” between
electrodes. Cluster trees are represented with dendrograms. See Figs. S2–S6
for enlarged, numbered versions of the dendrograms.

Electrode Localization. Electrode locations were determined based on post-
operative X-ray images. These images were coregistered with a preoperative
structural MRI scan and electrode locations were projected onto a rendering
of the cortical surface (40).
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